
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, Vol. 11, No. 4, April 2009, p. 369 - 379 
 

Band ferromagnetism in systems of variable 
dimensionality II: the two-dimensional finite-temperature 
case 
 
 
G. A. LUNGU*, C. M. TEODORESCU  
National Institute of Materials Physics, P.O. box MG-7, Bucharest-Magurele, Ilfov, 077125, Romania 
 
 
 
In a previous paper [C.M. Teodorescu and G.A. Lungu, J. Optoelectron. Adv, Mater. 10, 3058 (2008)] we studied the zero 
temperature problem of the occurence of band ferromagnetism and of the derivation of the Stoner criterion for systems of 
variable dimensionality: 1D, 2D, 3D. The dimensionality of the system is reflected by a different shape of the density of 
states. For ideal 2D systems, the density of states is a constant and this seems to be the simplest case to be modelled. In 
this paper we integrate to this simplest model of constant density of states the influence of temperature, in order to analyse 
temperature-dependent ferromagnetism in two-dimensional systems, such as magnetic surfaces. Some surprising results 
are obtained, namely: (i) in contrast to the common belief, in this case the influence of the temperature is to favour, not to 
inhibit ferromagnetism, i.e. in some conditions ferromagnetism may be obtained at finite temperature, even for systems 
where the zero temperature Stoner criterion is not satisfied; (ii) for a careful choice of the ratio between the Hubbard energy 
parameter  and the equilibrium zero-temperature Fermi level value , systems nonmagnetic at low temperature which 
become magnetic at higher temperature may be possible. A short review of the experimental data which may be interpreted 
within the present formalism is also given. 
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1. Introduction 
 
Since the original paper of Stoner [1], many studies 

treated the band ferromagnetism, since it is a resonable 
alternate model to magnetism of localized moments for 
explaining magnetism in metals. Nowadays, these studies 
are revigorated, especially dealing with magnetism in low-
dimensional systems of delocalized electrons, mainly 
because of recent achievements in the experimental 
synthesis of such systems [2,3]. We note the quite recent 
report on the experimental evidence of ferromagnetic 
order in nickel single atomic layers on Cu(001) [4], and of 
linear decrease of magnetisation with temperature, which 
was treated in a model of 2D spin waves. 

Recent studies of surface magnetism revealed exciting 
trends, mainly the possibility of synthesis of ferromagnetic 
surfaces from materials which are not ferromagnetic in the 
bulk. In 2000, the synthesis of magnetic hcp chromium 
grown on Ru(0001) was reported [5]. In 2001, the long-
standing problem of the magnetism of the c(2×2) Mn 
grown on Cu(001) was shown to exhibit ferromagnetism 
[6], and in 2003 magnetic vanadium was synthesized on 
Cu(001) in the form of small aggregates grown at very low 
temperature [7]. The generic affirmation that "the Stoner 
criterion is satisfied in surfaces, whereas it is not satisfied 
in the bulk material" is somehow misleading, in the 
absence of a detailed knowledge of the density of states of 
the above mentioned surfaces. In this work, we intend to 
systematically investigate the occurence of 
ferromagnetism as function on temperature in metal 

surfaces and to compare the theoretical findings with 
recent available experimental data. 

In a previous paper [8], we treated the zero 
temperature case for the occurence of band 
ferromagnetism in systems of variable dimensionality. The 
dimensionality of the system is taken into accont via the 
energy dependence of the equilibrium density of states 

 for 3D,   for 2D, and 
 for 1D. The ferromagnetic interaction 

occurs via the Hubbard energy term , where  is 
the polarization fraction:  electrons per unit volume 
passed from the minority spin sub-band to the majority 
spin sub-band (where  is the total electron density). 
Therefore, the Fermi levels will be different for the 
majority and for the minority sub-bands  and , 
functions on . This allows to compute the kinetic energy 
increase due to the spin polarization and then the total 
energy variation . Stable states are obtained when 

 exhibits a minimum. The Stoner criterion 
examines the stability of the paramagnetic state ; 
indeed, it may be shown that the energy always exhibits an 
extremum at , but, in order to obtain 
ferromagnetism, this extremum must be a maximum, i.e. 

 must be negative. This inequality is readily 
transformed in a condition between the relevant 
parameters of the model (e.g. Hubbard energy, equilibrium 
Fermi level), which is called the Stoner criterion [1]. 
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In the present study, we aim to integrate the 
temperature in the simplest model, that is, constant density 
of states, representing two-dimensional systems. The same 
procedure as in [8] will be followed: in Sec. 2 we describe 
the relevant parameters of the polarized sub-bands, in Sec. 
3 we compute the total energy, then in Sec. 4 its first 
derivative. Before computing the second derivative, we 
must stop on some novel aspects evidenced by these 2D 
systems, i.e. on the co-existence of ferromagnetism and 
paramagnetism in a certain region of the parameter space. 
Both states correspond to local minima. One state 
(ferromagnetic or paramagnetic) is represented by the 
absolute minimum, being then the most stable state, while 
the other state of the system is metastable, corresponding 
to a relative minimum (Sec. 5). In Sec. 6 we investigate 
the possibility of engineering novel systems starting with 
the present study, i.e. systems which are paramagnetic at 
low temperature and become ferromagnetic by rising the 
temperature. In Sec. 7 we will compute the second-order 
derivative of the energy and derive a temperature-
dependent Stoner criterion, while Sec. 8 presents some 
conclusions. 

A problem which will be just outlined in this work is 
the behaviour of the system near the critical point (Curie 
temperature). This is a separate work and will be detailed 
in another paper. Nevertheless, an outline about the 
behaviour near the critical point will be sketched in the 
Conclusions paragraph.   

In the following,  we will continue with some 
notations of the problem. 

For the finite temperature case of two-dimesional free 
electron model, the density of states is supposed to be 
constant, that is 

 
                  (1) 

 
where  is the zero temperature Fermi level. 

Thus, the number of electrons in equilibrium state for 
a sub-band  or  is 

 

      (2) 

 
with  being the finite temperature Fermi level, and 

 the Fermi-Dirac distribution function. 
With the same notations  and 

, we may write that 
 

,              (3) 

 
so we can express the finite temperature Fermi level as 
function of zero temperature Fermi Level: 

            (4) 

 
which may also be written for  as function of :  
 
                         (5) 

 
 
2. Polarized sub-bands 
 
The electron densities of the spin „up” and spin 

„down” sub-bands,  and , are obtained as functions of 
the corresponding temperature-dependent Fermi levels 

 and : 
 

       (6) 

 
       (7) 

 

 Noting  and  we obtain 

expressions similar to Eq. (3): 
 

         (8) 

 
Conversely,   
 

           (9) 
 

 In the finite temperature case, there exists a 
maximum value of the polarization, , corresponding 
to the displacement of the Fermi level corresponding to the 
minority sub-band at the minimum available energy, 
which has been chosen as zero. Setting , one 
obtains: 

 

   (10) 

 
It follows that, if , no polarization can be 

achieved, independently of how important the Hubbard 
interaction parameter  is. The maximum position of the 
Fermi level for the majority spin sub-band is 

 

.                (11) 

 
Note also that in this case the shift towards higher 

energies of the majority spin Fermi level is not equal to the 
shift towards lower energies of the minority spin Fermi 
level: 
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  (12) 

 
(unless ). 

The above statement is valid for any value of the non-
zero polarization: 
 

           (13) 

 
Using algebra, one can express the magnetic 

polarization  as: 
 

                  (14) 

 
3. Total energy 
 
The energy  per electron and unit volume may be 

written as [8]: 
 

           (15) 

 
Where 
 

  (16) 

 
 With two succesive variable changes , 
and  or  respectively, one obtains for 

 the following expression: 
 

 (17) 

 

where  
 

       (18) 

 
is the dilogarithm function defined in the complex plane 
over the open unit disk [9], and  
 

 

 

(the limit equals the definite integral  [10]). 

In the same manner, with succesive variable changes 
 and , we obtain for 

: 
 

     (19) 

 
thus: 
 

  (20) 

 
We will be able to express the energy  (Eq. (15)) as 
function of ,  and , knowing that  
[1]: 

 

  (21) 

 
with  and  as functions on  and , given by eqs. (5) 
and (9), respectively. 

By dividing by  and replacing ,  and  
from (5) and (9), one obtains the reduced energy 
dependence on , , and : 
 

 (22) 
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Two-dimensional plots of  , by taking  as 
parameter ( ), are given in Fig. 1. 

One may observe the following: (i) for low values of 
the equilibrium Fermi energy  (in  units), one 
obtains a result quite similar to the  case, namely 
the system has its minimal energy in the state with 
maximum polarization  or , given by Eq. 
(10), according to Sec. 2; (ii) increase of the Hubbard 
energy (also measured in  units) makes this minimum 
more and more pronounced; (iii) for larger values of , 
the minimum energy is obtained for the paramagnetic state 

; (iv) however, the general trend of the energy 
surfaces is quite similar to the  case, represented by 
the equation 

 
 (23) 

 
where we divided by a non-vanishing, though small, 
thermal energy ( ) and by the total electron density . 

 However, there are more subtle differences between 
the zero- and the finite-temperature cases, which will be 
outlined below. 

 
 
4. First derivative of the total energy.  
 

 is computed by taking into account that 
the derivative of the dilogarithm is expressed as follows 
[9]: 

                (24) 

 
therefore: 
 

(25) 

 
which has the final expression: 
 

      (26) 

 
The condition for extremum  

requires either , or, for , 
 

(27) 

 
with: 
 

                                       (28) 

 

 
 

Fig. 1. Plots of the energy  as function 
on the asymmetry parameter  and on the absolute 
position of the Fermi level  in  units 
[ ], for several values of the Hubbard  
         energy , also in  units [ ]. 
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                                   (29) 

 

          (30) 

 

              (31) 

 
 

Eq. (31) implies that at low temperatures or high 
 (  or ) the Stoner criterion 

derived in [8] is valid, that is . 
 Plots of the function  in two extreme cases, 

 and  [Eqs. (30)-(31)], are illustred in Fig. 2. 
The band delimited between these two curves represents 
regions in the plane  where solutions  
exist (except for the trivial one, ) to cancel the 
derivative . These additional solutions lie in 
the region where, at , the Stoner criterion is not 
satisfied: . 

In Fig. 2, one may identify three regions, as function 
on the behaviour of the energy . Region (I), 
where , represents a maximum of . Here the 
paramagnetic state is unstable, and the ferromagnetic state 
has lower energy. The energy dependence on the 
asymmetry parameter is a concave parabola (Fig. 2 from 
[8]). Region (III), where , represents a minimum of 

. Here the paramagnetic state is the most stable, and the 
energy dependence is a convex parabola (Fig. 2 from [8]). 

 An interesting remark is that, by taking into account 
the temperature effects, the ferromagnetic region is more 
extended in the plane . Normally, according to 
[1], ferromagnetism should occur for , whereas 
here a “tail” representing  ferromagnetic states penetrates 
into the  paramagnetic region. In the extreme case 
of very  large temperatures , the ferromagnetic 
state might be installed even at . This has 
troubling consequences which will be discussed in a 
subsequent paragraph, after ellucidating all regions in Fig. 
2. 
 

5. Co-existence of stable paramagnetism and  
     ferromagnetism (of which one is stable) 
 
In region II from Fig. 2, the paramagnetic state  

is still a minimum, but the energy derivative  
has a second extremum , which is a maximum, 
as in Fig. 3. Consequently, in this region one may speak 
about two stable states, the paramagnetic , and the 
ferromagnetic . In fact, by taking into account the 
observations from Sec. 2, the maximum allowed 
polarization is not , but , 
according to Eq. (10). 

 

In the following, we will suppose that no other 
limitation (e.g. Hund’s rules) occurs for  to take the 
maximum allowed value, , in this region. 

 

 
Fig. 2. Regions delimited in the  plane. In the 

 case, the upper region with , for any , 
corresponds to ferromagnetism, while the lower region, 
with  corresponds to paramagnetism. For the 
discussion of the finite temperature case, see the text for  
                                         details. 

 
  

Fig. 3 represents typical energy dependencies in 
Region II. Fig. 3(a) and Fig. 3(b) represent energy curves 
by keeping fixed  and  respectively, for several 
values of . Fig. 3(c) presents similar dependencies, 
obtained by fixing  and varying . 

It may be seen that Region II is rather narrow in the 
plane ( , ). Practically, this two-extremum behaviour is 
realized roughly in a range of 5-10%  

However, an interesting problem to be explored 
consists in the evaluation of which state (ferromagnetic, or 
paramagnetic) is the most stable one – the other being 
metastable. Everything consists then in evaluating the sign 
of the total energy for . By replacing  from 
Eq. (10) in the expression of the energy  – Eq. 
(22), taking into account that  is given by Eq. 
(11), and , one obtains:  

 

   (32) 
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Fig 3. Energy stability curves in region II from Fig. 1. (a) 
 fixed,  variable; (b)  fixed,  variable; 

(c)  fixed,  variable. The vertical blue line 
represents the maximum allowed value for the 
polarization, according to Eq. (10). In (c), the 
corresponding values of the maximum polarization lie 
between two blue lines, corresponding to  and 

,  decrease  of  the    ratio below the   
     Stoner criterion for the chosen ranges of  and . 

 

A two-dimensional plot of  is given in 
Fig. 4. 

The paramagnetic region is then defined as the region 
where . This was 
evidenced in Fig. 4 by the colored background. More 
comments on this plot will be made in the next Section. 

 
 
6. High temperature ferromagnetism. Some  
    key remarks on the possibility of  
    engineering systems with controllable  
    ferromagnetism 
 
 Regarding the stability of ferromagnetism with the 

temperature, the following surprising features appear from 
the considerations of the last Section. In the following, we 
will suppose that the 2D system is fully characterized by 
the values of the Hubbard parameter  and the position of 
the equilibrium Fermi level  and we shall investigate 
the influence of the temperature. 

(i) First of all, we remark that the y axis of Fig. 2 and 
Fig. 4 is represented by  and is therefore 
independent of the temperature. Consequently, if the 

, Stoner criterion is satisfied, i.e. , the 
ferromagnetic state is stable for the whole range of . 
However, there is a limitation in the sense that the first 
term of Eq. (32) must be finite, i.e. , then 

. When , 
, then the energy becomes 

infinite for  and therefore the ferromagnetism 
cannot be established with the maximum allowed 
polarization. 

(ii) The most important remark is that there exists a 
region when  where the zero 
temperature Stoner criterion   is not 
satisfied, but ferromagnetism occurs. Moreover, in this 
region ferromagnetism might occur for low values of  , 
i.e. for given  at high temperatures. Let us explore 
this situation based on Figs. 2 and 4. For low temperatures, 
i.e. high values of , the system is in the paramagnetic 
region. By increasing the temperature (i.e. coming with  
from infinity towards zero on a straight line of constant 

) at a certain value of , the line given by Eq. (31) is 
intercepted. In this region,  is still a minimum, but 
the energy curve has a maximum at another value of 

. Consequently, towards high values of 
polarization, the energy of the system decreases, such that 
the ferromagnetic state with  is metastable. By 
further decrease of , the line corresponding to 

 is intersected. Here, the energy value at  
becomes negative and consequently the paramagnetic state 
(although still a minimum, but a local one) becomes the 
metastable state, whereas the ferromagnetic state is the 
most stable. For further decrease of , the curve given by 
Eq. (30) is intercepted and here the paramagnetic state 
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becomes unstable; then in this region the ferromagnetic 
state  is the only stable state. 

 
 

 
 
Fig. 4. Plots of the function : (a) 3D surface 
plot; (b) contour plot. In (b), the region where 

, i.e. where the ferromagnetic state at 
 has higher energy than the paramagnetic state 

( ),   is   colored.   The  f erromagnetic   state  where  
           is represented by the white region. 

 
 

 Consequently, in the region investigated here the 
system is paramagnetic at low temperatures and becomes 
ferromagnetic at high temperatures. This offers the 
possibility of engineering such systems, i.e. choosing 
systems where the Hubbard energy and the equilibrium 
zero temperature Fermi levels are slightly below 2 (e.g. 
1.8-1.9). 

 One may evaluate the temperature where the 
ferromagnetic state is the most stable. The energy  
changes its sign when , 
which is the line corresponding to . 
From Eq. (32) it follows that: 

 

(33) 

 
This dependence is well approximated by: 
 

 (34) 
 

From here and from the definition of , 
one may compute the temperature where the ferromagnetic 
state becomes the most stable: 
 

             (35) 

 
We remind that all the last considerations are valid for 

. 
 However, the application of this concept is far from 

being practical. For ultrathin layers of Fe, and considering 
that we are allowed to use data for bulk Fe, 

 [11] and  [12], therefore, 
according to Eq. (35), one obtains , 
which is more than 170,000 degrees Kelvin! 
Consequently, the actual "engineering" cannot be applied 
for systems where the absolute values of  and  do 
not exceed some 0.1 eV. This would be the case of 
semiconductors or diluted magnetic systems, where, 
indeed, phenomena such as light control of 
ferromagnetism (by varying , amongst others) have 
been recently put into evidence [13]. 

(iii) As a general rule, most of the energy curves 
represented in Fig. 3 are "flat" with respect to thermal 
agitation, i.e. . The relative stability 
between the ferromagnetic and the paramagnetic state is 
low, as compared to the thermal energy. In this case, 
simple statistics considerations will give the average value 
of the polarization as: 

 

          (36) 

 
with  given by Eq. (22). Plots of  as function 
on  are represented in Fig. 5. For the clarity of 
interpretation, plots as function on  and also on 

 are presented, the latter presentation 
[Fig. 5(b)] being easily comparable with experimental 
temperature dependence on magnetisation . The 
following remarks are in order:  
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(a) For large values of , the obtained  
curve is almost linear with temperature. A similar 
behaviour was reported for nickel single layers on Cu(001) 
[4,16]; however, in Ref. [4] an explanation of this  
was given based on two dimensional magnons, whereas in 
Ref. [16] no explanation of this behaviour was proposed. 
Here we propose as alternate explanation of the linear 
decrease of  the 2D band ferromagnetism, 
concretized by a constant density of states.  

We note also that a flat band model (a Friedel density 
of states [12]) explained well the magnetic properties of 
Fe/InAs(001) interfaces [12-13]. The effective (orbital and 
spin) magnetic moments per Fe atom obtained by X-ray 
magnetic circular dichroism for the above reference at 
room temperature suggest a value of  
and . 

(b) For smaller values of , the 
 decrease has another kind of shape, with a stronger 

decrease at low temperatures [Fig. 5(b)], followed by an 
almost linear decrease at higher temperatures. We found 
exactly this kind of behavior in Ref. [17], regarding 1.9 
atomic layers of cobalt deposited on Cu(001) (see Fig. 3(b) 
from [17]). No explanation of this particular behaviour 
was given in the above paper. Instead, the data points were 
qualitatively fitted with a Brillouin ferromagnetic function 
in order to estimate the Curie temperature. Here we 
propose that  dependencies such as the one cited 
above are fully explained by the present model of band 
two-dimensional ferromagnetism and the present theory 
allows to estimate the equilibrium Fermi energy as being 

, and the Hubbard energy as 
being . The above values suggest 
a strong band narrowing for surface Co films, together 
with a considerable decrease in the total Hubbard energy 
(usually it exceeds 8 eV), which partly is due to the 
decrease in the number of nearest neighbours (4 in a 2D 
layer, as compared with 12 in the bulk hcp structure); and 
partly to the increase in the interatomic distance induced 
by the epitaxy process:  for Co/Cu(001), as 
compared to  nearest-neighbour distance in hcp Co. 

From the papers dealing with magnetic surfaces cited 
in the Introduction, a striking similarity with the curves 
presented in Fig. 5 may be found for the c(2×2) 
Mn/Cu(001) [6]. Here, the magnetisation vanishes at 55 ± 
2 K, which implies  and the general 
shape of the  curve is well fitted by a ratio 

, which gives the Hubbard energy 
. The average spacing between two 

manganese atoms is even lower here, being around . 
Consequently, the Hubbard energy strongly decreases with 
the spacing between adjacent magnetic atoms. 

 Even more illustrative is the comparison of the 
magnetisation curve of magnetic vanadium clusters, see 
Fig. 3 from Ref. [7]. The curve is quite similar to the curve 
from Fig. 5(b) corresponding to . The 
relevant parameters which may be obtained for 

ferromagnetic vanadium are  and 
.  

(c) For even smaller values of , there 
occurs an unexpected magnetic behaviour with the 
temperature. Increase of the temperature implies increase 
in the magnetisation of the system. The maximum is 
attained for a temperature , where 

, with a slow variation as 
function on the ratio . Systems with this 
behaviour have been reported in literature. In [16], this 
trend is exhibited by some atomic layers of Ni deposited 
on Cu(001); the same feature seems also visible in some 

 dependencies reported in [15], concerning 
interacting trilayers Co/Cu/Ni/Cu(001). More recently and 
in connexion with our estimate that the present theory 
should apply especially in diluted magnetic systems are 
concrete findings of noticeable increase of magnetisation 
with temperature in cobalt-doped ZnO [18] and partly also 
in (In,Mn)As [19] diluted magnetic semiconductors. 
 
 

 
 

Fig. 5. Statistical average of the polarization degree of 
the 2D electron gas, as function on  (a) and as function 
on  (b), for several values of the 
ratio , given as numbers associated to each 
curve; (b)  may  be  easily  be  converted  in  a qualitative  
                             M(T) dependence. 
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7. Second order derivative of the energy. The  
    Stoner criterion 
 
The second-order derivative of  with respect to 

magnetic polarization  has the expression 

  (37) 

 
From this expression it results that  
 

           (38) 

 
The Stoner criterion, which consists in inequality 

, means that 

 

           (39) 

 
For the limit of zero temperature, that is 

 
                            (40) 

 
the Stoner criterion may be expressed as  
 

                          (41) 

 
and consequently the  Stoner criterion is retrieved. 

Towards high temperatures, 
 

                          (42) 

 
so ferromagnetism is easier obtained at high temperatures, 
where it suffices that . 

 The function  defined with the Stoner criterion 
(Eq. (39)) is represented in Fig. 6, red curve. Above this 
curve, the system is ferromagnetic, and below it, 
paramagnetic. This function is compared in Fig. 6 also 
with the curve defined by  from Eq. (33). We recall 
here that the meaning of the latter function was the 
following: above it, the energy corresponding to the 
maximum polarization is lower than the energy of the 
paramagnetic state; and below this curve, the paramagnetic 
state ( ) is the most stable. 

 As expected, the condition for lower energy in the 
ferromagnetic state is more relaxed than the Stoner 
criterion. In fact, between both curves from Fig. 6, the 
paramagnetic state is a minimum (the Stoner criterion is 
not satisfied, the energy as function on  is a convex 
parabola near ), but this minimum is local; the 

energy corresponding to the maximum polarization is 
lower. The paramagnetic state is metastable in this region. 
 
 

 
Fig. 6. Comparison between the Stoner criterion of 
ferromagnetism [eq. (39)] with the conditions that the 
energy corresponding to the maximum polarization  
is lower than the energy of the paramagnetic state   
                                           [Eq. (33)]. 
 
 
 Thus, Fig. 6 offers the possibility of engineering 

materials with metastable paramagnetism, which may 
evolve spontaneusly (by thermal or optical activation) 
towards the ferromagnetic state. Interesting applications 
may be foreseen, such as magnetic switches or memories. 

 
 
8. Conclusions 
 
 The temperature-dependent theory of band 

ferromagnetism is formulated for the simplest case, that of 
a constant density of states, corresponding to the ideal case 
of an infinite two-dimensional system. Conditions for 
ferromagnetism occurence and the Stoner criterion are 
derived in this temperature-dependent case. Two 
surprising features are outlined by the model, namely: (i) 
The existence of a region in the parameters space where 
ferromagnetism coexists with paramagnetism (both  
and  states are local minima). Obviously, the 
state with the lower energy is the stable state, and the other 
is metastable. This offers the possibility of engineering 2D 
systems, e.g. by surface science methods [2], which may 
exhibit these features. (ii) The possibility of synthesis of 
two-dimensional systems where the magnetisation 
increases with the temperature. Some examples from 
literature compare well with these theoretical findings. (iii) 
Finally, the present theory is well confirmed by most of 
the recent experimental findings of surface 
ferromagnetism from metals which are nonmagnetic in the 
bulk: Cr [5], Mn [6], and V [7], and also on metal-
semiconductor interfaces [12-13] and diluted magnetic 
semiconductors [13-14]. 
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 The Stoner condition, derived in the same way as in 
Ref. [8], i.e. by analyzing the sign of the second order 
derivative of the energy as function on  in the 
paramagnetic state ( ), is no longer an immutable 
condition of the occurence of ferromagnetism. It may 
happen that this second order derivative at  is still 
positive, implying that paramagnetism results in a local 
minimum of the energy, but the paramagnetic state is 
metastable. The ferromagnetic state, with maximum 
polarization, may correspond to a lower energy, see Fig. 3. 
Therefore, a more relaxed condition for the stability of the 
ferromagnetic state is derived in the present work, as 
compared with the Stoner criterion which relies only on 
the local minimum/maximum character of the energy 
extremum at zero polarization. This is achieved by putting 
the condition that the energy of the state with maximum 
polarization must be lower than the energy of the 
paramagnetic state, see Eq. (32). 

 The co-existence of ferromagnetism and 
paramagnetism is a new feature, together with the 
possibility of switching relatively easily between the two 
states. Small variations of the Hubbard parameter  
and/or of the equilibrium Fermi energy  are required 
to move the paramagnetic state from being the most stable 
one to being metastable. This opens the possibility of 
novel devices based on the magnetism of two-dimensional 
metallic systems. Also, layered materials with anomalous 
magnetisation vs. temperature curves ( ) may 
be synthesized according to the present theory. 

 An attractive problem is the phenomenology of the 
phase transition and the behaviour near the critical point 
for this system. This is a complex problem; it is still under 
investigation and will be detailed in a further paper. 
Nevertheless, we will give a brief outline of this problem. 
Three alternate methods are currently investigated: (i) The 
Landau theory of the second order phase transitions, which 
supposes the development of the energy [Eq. (22)] up to 
fourth order in the order parameter , then the application 
of the Landau general equations, derivation of critical 
exponents, etc. [20]. (ii) A second method to tackle this 
problem is to compute the entropy of the system, starting 
with its statistical definition: 
 

                        (43) 

 
In the vicinity of the critical temperature, the energy 

variation of the system  is quadratic in , as 
expected from the general Landau theory [20] and is 
identified as the contribution of the microscopic exchange 
term, proportional to , where  is 
obtained by series development of the kinetic energy term, 
Eq. (22). From here, an expression for the critical 
temperature follows and this implies a limitation of the 
ferromagnetic region in the diagrams such as presented in 
Figs. 2, 4, and 5. (iii) An alternate way to treat this 
problem is to evaluate the fluctuations in the order 
parameter , i.e. by computing the standard deviation 

, by using averages such as Eq. 
(36). Then, these fluctuations are compared to the average 
value of the polarization , resulting in a condition for 
the temperature of the system. The goal of the study 
outlined briefly above is to obtain perfectly coherent and 
comparable results from all methods used. 

 An expected result of all these theories is that there 
exists a well-defined, finite critical temperature for the 2D 
band magnetism. This is in contrast with the case of 2D 
lattice magnetism, where Mermin and Wagner have 
proven more than four decades ago the absence of 
ferromagnetic or antiferromagnetic ordering in two-
dimensional isotropic Heisenberg systems [21]. An 
equivalent proof of this theorem was sketched more 
recently [4], by considering two-dimensional magnons 
whose action is to suppress ferromagnetism at  for 
infinite 2D systems; it has been shown that the persistence 
of nonvanishing magnetisation at very low temperatures in 
2D systems may be connected to the finite size of the 
magnetic system investigated. Back to the case of band 
ferromagnetism, we proved that here nonvanishing 
magnetisation exists for infinite spatially extended 
systems, which is an essential difference between the spin 
and band magnetism in two dimensions. This difference 
disappears in case of 3D systems.  

 In conclusion, band ferromagnetism may exhibit 
surprising features even in the simplest case, that of a 
constant density of states. It is clear that this work will be 
continued with the subsequent theory of phase transitions, 
and also with considerations of band ferromagnetism in 
systems characterized by other kinds of density of states 
1D and 3D systems [ , respectively ], 
parabolic density of states, linear (and not constant) 
density of states, and others. 
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